Elementary Complexity into the Hyperfinite II1 Factor

نویسندگان

  • Marco Pedicini
  • Mario Piazza
چکیده

In this paper, we show how the framework of von Neumann algebras can be applied to model the dynamics of computational processes. Namely, our aim is to gain an understanding of classical computation in terms of the hyperfinite factor, starting from the class of Kalmar recursive functions. Our model fits within a vast project of reshaping the unified theory of semantics of computation called geometry of interaction along the lines recently sketched by J.Y. Girard.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computability and the Connes Embedding Problem

The Connes Embedding Problem (CEP) asks whether every separable II1 factor embeds into an ultrapower of the hyperfinite II1 factor. We show that the CEP is equivalent to the statement that every type II1 tracial von Neumann algebra has a computable universal theory.

متن کامل

Dirichlet forms on hyperfinite II1 factor

Based on the structure of the hyperfinite II1 factor, we study its Dirichlet forms which can be constructed from Dirichlet forms on M2n(C).

متن کامل

A continuous path of singular masas in the hyperfinite II1 factor

Using methods of R.J.Tauer [13] we exhibit an uncountable family of singular masas in the hyperfinite II1 factor R all with Pukánszky invariant {1}, no pair of which are conjugate by an automorphism of R. This is done by introducing an invariant Γ(A) for a masa A in a II1 factor N as the maximal size of a projection e ∈ A for which Ae contains non-trivial centralising sequences for eNe. The mas...

متن کامل

Connes’ Embedding Problem and Lance’s Wep

A II1-factor embeds into the ultraproduct of the hyperfinite II1-factor if and only if it satisfies the von Neumann algebraic analogue of Lance’s weak expectation property (WEP). This note gives a self contained proof of this fact.

متن کامل

Some Quasinilpotent Generators of the Hyperfinite Ii1 Factor

Abstract. For each sequence {cn}n in l1(N) we define an operator A in the hyperfinite II1-factor R. We prove that these operators are quasinilpotent and they generate the whole hyperfinite II1-factor. We show that they have non-trivial, closed, invariant subspaces affiliated to the von Neumann algebra and we provide enough evidence to suggest that these operators are interesting for the hyperin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007